Copepod Sex-Ratios May Be Female-Biased at Birth

- Field populations of Acartia tonsa are often female-biased, which may be due to skewed sex-ratios at birth.
- Offspring sex-ratios from field-caught A. tonsa females were determined by rearing individual families in the lab.
- Of 21 mothers, 9 produced significantly female-dominated clutches, whereas 4 produced mostly male offspring.
- Because mortality was low for all copepod stages, we infer that adult sex-ratios were determined mostly at birth.
- Therefore, female-biased sex-ratios at birth may explain some of the adult sex-ratio skew present in the field.

INTRODUCTION

- Field and laboratory populations of calanoid copepods tend to be female-dominated, which may impact population growth by decreasing mate-encounter rates. ${ }^{1}$
- These skews may result from higher male mortality rates, environmental sex-determination, or biased ratios at birth. 2,3
- There is little information on copepod sexratios at birth, making it difficult to draw conclusions about their importance in determining adult ratios.
- This study aimed to determine if females of
 the abundant coastal copepod, Acartia tonsa, produce skewed sex-ratios of offspring at birth.
- HYPOTHESIS: Birth ratios of A. tonsa are female-biased at the family level and result in a female-skewed adult population.

METHODS

- 30 field-fertilized females were fed for 4 days on a standard diet. Eggs produced on the $4^{\text {th }}$ day were used in the study. Families averaged ~ 44 offspring.
- Survival was recorded for individuals at all life stages; sex was noted at stages C5 and adult.
- 9 families were excluded because they produced few eggs, the eggs did not hatch, or the family had high mortality.
- Adult sex-ratios were used as a proxy for ratios at birth since mortality was low (inset).
The null hypothesis ($\delta^{\lambda}: 9=1$) was tested against the observed sex-ratio for each family using a χ^{2} To test that sex-ratio skews were not due to differential mortality of the rarer sex, a conservative approach
 was applied in which dead individuals were scored as the rarer sex. Statistics were then rerun on these new sex-ratios.

REFERENCES

Kiørboe, T. 2006. Sex, sex-ratios, and the dynamics of pelagic copepod populations. Oecologia. 148:40-50. Hirst, AG, Bonnet, D, Conway, DVP, Kiørboe, T. 2010. Does predation control adult sex-ratios and longevities in marine pelagic copepods? Limnology and Oceanography. 55:2193-2206. Gusmao, LFM and AD McKinnon. 2009. Sex ratios, intersexuality and sex change in copepods. Journal of Plankton Research. 31: 1101-1117

International Workshop on
TMaitubased approac Traitipased approaches to Ocean Lifie

RESULTS	
Non-conservative approach	Conservative approach

Populations were significantly female-biased at birth
Family Sex-Ratios

What other factors may explain the sex-ratio bias?

No correlation between the proportion of males produced and female size or the size of the brood.

DISCUSSION

$\geq 50 \%$ of Acartia tonsa mothers produced skewed sex-ratios (maleskewed: 4; female-skewed: 9).

- The female-biased population resulted from a preponderance of female biased families.
- The variability in sex-ratios among families was not due to differential mortality of the sexes, the size of the female, or her brood size.
- The biased sex-ratios at birth may explain some of the skew in adult field ratios.
- Future work will determine if sex-ratios are heritable or if they change depending on age or condition.

