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Concept: similar prey
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Mechanism of Sympatric Speciation

Optimal trait: specialisation

Specialisation trade-off
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I Arrows in b and d show the niche stabilisation process.

Problem
I sympatric speciation, i.e., without

geographic isolation, is
controversial and intriguing.
However, concrete mechanisms of
sympatric speciation remain
unknown.
I we present a concept of Speciation

space, defined as the range of
conditions allowing speciation

Solution
Iwe combine optimality-based and

trait-based approaches and treat
specialisation as a trait (S) (top
right):
I S = 0 (specialising exclusively on one

prey)
I S = 1 (specialising exclusively on the other

prey)
I S = 0.5 (omnivory: no specialisation)

I specialisation is assumed to affect
predator’s foraging efficiency (E,
ability to capture and eat the prey)

I we define a specialisation
trade-off between the improved
ability to eat the preferred prey (e(S))
and the reduced ability to eat the
less-preferred prey (e(1 − S))
I costs are quantified with the help of

the cost coefficient ζS ∈ [0; 1]
I ζS = 1 - any gain in foraging efficiency of

the preferred prey is offset by an equal
loss in foraging efficiency of the
non-preferred prey

I ζS = 0 - the foraging efficiency of the
non-preferred prey is not affected by
specialisation

I evolution of traits in phytoplankton
(top right)
I maximum specific growth rate µmax(P1)
I specific mortality rate d(P1)

Conclusion
Iwe use the Optimal Trait Approach

as a tool for discovering mechanisms
of speciation
I the model generates generalists and

specialists (bottom left and bottom
right)
I our model explains sympatric

speciation via top-down control
(bottom left)
I range of prey’s traits allowing

speciation in the predator allows to
determine the speciation space for
predators
I speciation thresholds (the boundary

of the speciation space) show
hillocks in the phytoplankton fitness
landscape and valleys in the
zooplankton fitness landscape
(bottom-up control)
I prey equality area (is a part of the

speciation space, where both prey
species have identical biomass but
different trait values) indicates
bottom-up control
I evolution closes the cycle by bringing

the control back to predators as soon
as one of predators goes extinct
I the specialisation landscape shows

the change in the predator’s adaptive
trait along:
I specialisation gradient itself (Z axes)
I cost gradient (X axes)
I trait gradient (Y axes)

Concept: different prey
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Fitness landscapes
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