

NETWORK ANALYSIS ON THE EFFECT OF CLIMATE ON MARINE FOOD WEB INTERACTIONS AND SOCIAL-ECOLOGICAL SYSTEM DYNAMICS

Johanna Yletyinen, Stockholm Resilience Centre

Introduction

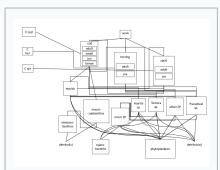
Environmental and anthropogenic changes, such as climate and fishing, can affect food web structure and dynamics with consequences for ecosystem services¹. Studying how changes in food web structure affect ecosystem dynamics and analyzing the linkages between humans and marine ecosystems are essential for resource management. Humans are a significant driver of changes in marine ecosystems, but also capable of changing their behavior when facing ecosystem changes².

Research Questions

Using the tools of ecological and social network analysis, my project aims to analyse the effect of climate on marine food webs in the context of social-ecological system dynamics.

My objectives are:

- To test new network approaches on marine food webs affected by multiple drivers
- To evaluate how climate contributes to past and future changes in the Baltic Sea, by applying multiple network analysis

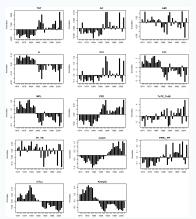

- Ecological network analysis (ENA) describes the composition and interactions of food webs and provides a conceptual framework for analysing the consequences of perturbations⁴.
- Social network analysis has created a rich set of structural analysis concepts, which ecological network research can test and benefit from.
- Social network analysis in natural resource management creates understanding on which social network characters increase the likelihood of successful natural resource management and collective action⁵.

Study Area

The study area consist of the Nordic seas included in the NorMER-region. The Baltic Sea is a

semi-enclosed, brackish- water ecosystem affected by intensive fishery and anthropogenic eutrophication⁶. The main study region is the central Baltic.

The structure of the food web model^{3.}


Next Steps

- Coupling of benthic and pelagic food web dynamics for describing the ecological interpretability of the resulting network structure, including network alteration according to the climate change predictions.
- Test for integrating social and ecological marine networks to study the human and environmental interactions

References

- 1. Tylianakis et al., 2010, Walther, 2013.
- 2. Perry et al., 2010
- 3. Tomczak, M.T., Heymans, J.J.,

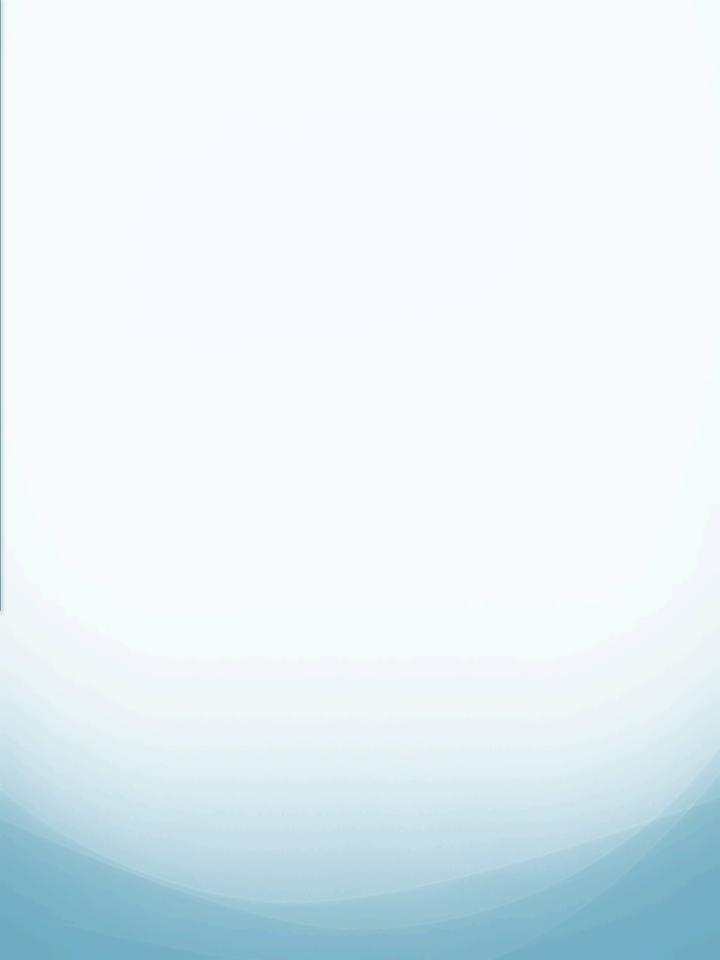
Yletyinen, J., Niiranen, S., Otto, S.A., Blenckner, T. 2013. Ecological network indicators of ecosystem status and change in the Baltic Sea. PLOS One (in press)

Ecological indicators and ENA indices anomalies (note different scale) from 1974-2006³.

Results

Our study³ results indicate that

- The use of 15 different ecosystem ENA indices succeeded in detecting the changes in the foodweb in 1980s and 90s, ENA clearly showing two regimes.
- Climate and fishing (external forcing) changed the structure and dynamics of the Baltic Sea food web.


Conclusions

- Network approach and indices proved to be very useful for detecting the structural and quantitative (flow) changes in the marine food web experiencing a regime shift.
- Our study emphasizes the importance of holistic approach: anthropogenic stressors need to be analysed in combination with ecosystem characteristics.

4. E.g. Wulff et al., 1989

5. Schneider *et al.*, 2003, Tomkin & Adger, 2004, Newman & Pale, 2004, Bodin *et al.*, 2006.

6. Wulff et al., 2001, Möllmann et al., 2009

