Towards an adaptive evolutionary and ecological trait-based model

Chris Lindemann*, Artur Palacz, Friederike Prowe DTU Aqua, Charlottenlund, Denmark

*corresponding author: chrli@aqua.dtu.dk

The Idea

The ET (Evolutionary Trait) model sets out to be

- a spatially explicit Individual-Based-Model (IBM)
- adapting on evolutionary and ecological timescales
- using a concept based on traits and trade-offs

The model is designed to work on as little predefinition as possibly, allowing for the emergent modeling of a wide range of size classes (viruses to whales) and trophic roles (parasites to top predator). It intends to test questions concerning the possibilities and requirements for building a more holistic emergent food web model.

The combination of physical environment, traits and combinations • FUNCTIONS: of trophic interaction drive the dynamics of this model. traits and states. Assim. efficiency TAG-flex (Internal model) STATE-size **Metabolic losses** Speed STATE TAG TRAIT STATE-size (Internal model) preferred STATE-size, max. Size of Size current size Assimilation overall uptake maturation Reproduction **TRAIT-size** Active (A) optimal current (asexual) STATE-size preferred proportion of **Structures** Passive (P) proportion of proportion of Net-growth structures Learning Hunger structures structures TAG-structure Storage (S) 2. Detection **TRAIT-structure** General Mobility STATE-size **Mutation** mobility 1. Movement Consumer moves to resource position \$ Detection radius movement = f(speed, environment)**4. Uptake saturation** (imagine a stomach to be filled) Who eats whom? Internal Model Upon encounter individuals compare matchscores of TAGs 5. Uptake 7. Loss terms (based on an idea by John Holland¹) to determine: (Example values) Gross uptake Ρ Storage structure will be used primarily Α 3. Max. uptake with 100% efficiency, while active and 20 10 70 50 % passive structures suffer conversion 30 who is the predator penalties. Max. Direct uptake 20 40 40 who is the prey 5 5 5 movement costs (own TRAIT structure) what proportion of which • (movement dependent) Indirect uptake stucture will be taken up 15 40 Net uptake 10 20 (needs conversion) 6. Assimilation efficiency standard metabolism (size-dependent)

0

The Agent

- **TRAITS:** define the internal characteristics of the individual in general terms (e.g. type, ecological role). These mutate on evolutionary timescale.
- **STATES:** define the current state of the individual.
- **TAGS:** define interactions between agents (Who eats whom?). Each TAG consists of three parts.

Each TAG consists of:		
value	prefered value	
flex	flexibility of value	
weight	relative importance of TAG (updated on ecological timescale)	

 \bigcirc

Ο

speed

Internal

model

egestion

	FUNCTIONS	Dependency	
Detection	Speed	TRAIT-Mobility TRAIT-active STATE-size	
	Detection	STATE-size (own) STATE-size (other)	
	Max. Uptake (<i>Who eats whom?</i>)	TAGs	
ax. uptake	Uptake saturation (Internal model)	uptake STATE-size	
	Net uptake (<i>Internal model</i>)	Max. uptake Uptake saturation TRAIT-size TRAIT-structure	

Example (size) of possible trophic interactions

<u>11. Mutation</u> (evol. timescale) Probability to change TRAIT values

Gross growth active metabolism (uptake dependent) **Predation loss**

related to the flexibility of the respective structure TAG. Thus, introducing a trade-off between flexibility and efficency of ressourceuptake (Generalist vs. Specialist).

BASIN SCALE ANALYSIS, SYNTHESIS AND INTEGRATION

The assimilation efficiency is inversely

egestion

Outlook

- Use Genetic Algorithm (GA) for mutation
- Introduce autotrophy (& mixotrophy)
- Introduce sensing trait
- 3D "realistic" environment
- Introduce sexual reproduction

8. Net Growth

1: J. Holland (1995) Hidden Order: How Adaptation Builds Complexity

DTU Aqua National Institute of Aquatic Resources

Ocean Life Centre for Ocean Life VKR Centre of Excellence