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Silicifiers vs calcifiers: do we get it right? Silicifiers vs calcifiers: we can get it right!

> The ratio of diatoms (silicifiers) to coccolithophores (calcifiers) is strongly
overestimated in most phytoplankton models, especially in high latitude high-
nitrate, low-chlorophyll (HNLC) regions [1].

> The PhytoANN model projects a much more realistic global distribution of
calcifier biomass using Particulate Inorganic Carbon (PIC) as a reference [4].

> The PhytoANN captures patterns of both seasonal and interannual variability

> Misrepresentation of these plankton traits can have tremendous implications in PFT biomass, including those of calcifiers

for the accuracy of our current and future estimates of ocean carbon cycling.
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PhytoANN: an ecological indicator model of PFTs PhytoANN's view of the world’s oceans

> The PhytoANN is based on an ensemble of artificial neural networks (ANNs) — > Using a few measurable, specific and sensitive ecological indicators, the
artificial intelligence tools capable of interpreting or ‘learning’ complex PhytoANN generates a very dynamic and patchy PFT distribution.
nonlinear interactions between some target features (here: PFT biomass) and

> The distribution is determined by complex and nonlinear interactions
multiple explanatory variables used as inputs (here: ecological indicators) [3]. Y P

between highly variable individual ecological niche components.
> In effect, our model turns a conceptual N-dimensional phytoplankton mandala
into an applied ecological indicator model of PFTs. diatoms

coccolithophores
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. A look into the future?

Figure 2: (top) A schematic representation of <
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